225 research outputs found

    Achieving full diversity in multi-antenna two-way relay networks via symbol-based physical-layer network coding

    No full text
    This paper considers physical-layer network coding (PNC) with M-ary phase-shift keying (MPSK) modulation in two-way relay channel (TWRC). A low complexity detection technique, termed symbol-based PNC (SPNC), is proposed for the relay. In particular, attributing to the outer product operation imposed on the superposed MPSK signals at the relay, SPNC obtains the network-coded symbol (NCS) straightforwardly without having to detect individual symbols separately. Unlike the optimal multi-user detector (MUD) which searches over the combinations of all users’ modulation constellations, SPNC searches over only one modulation constellation, thus simplifies the NCS detection. Despite the reduced complexity, SPNC achieves full diversity in multi-antenna relay as the optimal MUD does. Specifically, antenna selection based SPNC (AS-SPNC) scheme and signal combining based SPNC (SC-SPNC) scheme are proposed. Our analysis of these two schemes not only confirms their full diversity performance, but also implies when SPNC is applied in multi-antenna relay, TWRC can be viewed as an effective single-input multiple-output (SIMO) system, in which AS-PNC and SC-PNC are equivalent to the general AS scheme and the maximal-ratio combining (MRC) scheme. Moreover, an asymptotic analysis of symbol error rate (SER) is provided for SC-PNC considering the case that the number of relay antennas is sufficiently large

    Weighted Sum-Rate Maximization Using Weighted MMSE for MIMO-BC Beamforming Design

    Get PDF

    Estimation-based synthesis of H_∞-optimal adaptive equalizers over wireless channels

    Get PDF
    This paper presents a systematic synthesis procedure for H_∞-optimal adaptive FIR equalizers over a time-varying wireless channel. The channel is assumed to be frequency selective with Rayleigh fading. The proposed equalizer structure consists of the series connection of an adaptive FIR filter and a fixed equalizer (designed for the nominal channel). Adaptation of the weight vector of the adaptive FIR filter is achieved using the H_∞-optimal solution of an estimation-based interpretation of the channel equalization problem. Due to its H_∞-optimality, the proposed solution is robust to exogenous disturbances, and enables fast adaptation (i.e., a short training period) without compromising the steady-state performance of the equalization. Preliminary simulation are presented to support the above claims

    Adaptive equalization of multiple-input multiple-output (MIMO) channels

    Get PDF
    The paper proposes and investigates a new approach to adaptive spatio-temporal equalization for MIMO (multiple-input multiple-output) channels. A system with n transmit and m (m≥n) receiver antennas is assumed. A decision Feedback equalizer is considered. A least squares solution is first formulated, based on which a recursive solution using Riccati recursions is proposed. The proposed solution is tested by simulating the MIMO system. It is shown that the adaptive solution achieves the same performance as the optimum least squares solution. The effect of the nondiagonal channel elements (acting as interference) on the system performance is also studied. It has been shown that in order to achieve better performance, the interference from nondiagonal channel elements needs to be minimized. This can be done by using orthogonal transmission. Moreover the proposed solution do not require channel identification and will also enable equalizer adaptation to channel changes

    Adaptive equalization of multiple-input multiple-output (MIMO) frequency selective channels

    Get PDF
    The purpose of this paper is to propose and investigate a new approach to adaptive spatio-temporal equalization for MIMO (multiple-input multiple-output) channels. A system with n transmit and m (n≥m) receiver antennas is assumed. An adaptive MIMO linear equalizer has been considered. For the considered equalizer a least squares solution is formulated, based on which a recursive solution using Riccati recursions is proposed. The solutions are tested by simulating the MIMO system. It is shown that the adaptive solutions will achieve the same performance as the optimum least squares solutions. The effect of the nondiagonal channel elements (acting as interference) on the system performance is also studied. It has been shown that in order to achieve better performance, the interference from nondiagonal channel elements needs to be minimized. This can be done by using orthogonal transmission. Moreover the proposed solutions do not require channel identification and will also enable equalizer adaptation to channel changes

    On the MIMO Channel Capacity for the Nakagami-mm Channel

    Full text link

    Physiological niche and geographical range in European diving beetles (Coleoptera: Dytiscidae).

    Get PDF
    Geographical ranges vary greatly in size and position, even within recent clades, but the factors driving this remain poorly understood. In aquatic beetles, thermal niche has been shown to be related to both the relative range size and position of congeners but whether other physiological parameters play a role is unknown. Metabolic plasticity may be critical for species occupying more variable thermal environments and maintaining this plasticity may trade-off against other physiological processes such as immunocompetence. Here we combine data on thermal physiology with measures of metabolic plasticity and immunocompetence to explore these relationships in Deronectes (Dytiscidae). While variation in latitudinal range extent and position was explained in part by thermal physiology, aspects of metabolic plasticity and immunocompetence also appeared important. Northerly distributed, wide-ranging species apparently used different energy reserves under thermal stress from southern endemic congeners and differed in their antibacterial defences. This is the first indication that these processes may be related to geographical range, and suggests parameters that may be worthy of exploration in other taxa

    Amplify-and-Forward Distributed Beamforming with Local CSI in the Presence of Interferences

    Get PDF
    This paper introduces an optimum amplify-and-forward (AF) distributed beamforming (DBF) in the presence of cochannel interference (CCI) when only local channel-state information (CSI) is available at each relay. It is shown that the proposed DBF closely achieves the performance obtained with global CSI when interference power toward relays is small or there are a large number of interferers but greatly reduces the complexity and overhead. The proposed DBF provides significant improvements over the conventional DBF designed without considering CCI at the cost of slightly increased complexity and overhead and achieves the capacity scaling of 1/2log⁡K through K relays, where 1/2log⁡K corresponds to the maximal capacity scaling when there is no CCI
    corecore